博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
【转】Spark:Master High Availability(HA)高可用配置的2种实现
阅读量:6651 次
发布时间:2019-06-25

本文共 8489 字,大约阅读时间需要 28 分钟。

  原博文出自于:    感谢!

 

  Spark Standalone集群是Master-Slaves架构的集群模式,和大部分的Master-Slaves结构集群一样,存在着Master单点故障的问题。如何解决这个单点故障的问题,Spark提供了两种方案:

  • 基于文件系统的单点恢复(Single-Node Recovery with Local File System)
  • 基于zookeeper的Standby Masters(Standby Masters with ZooKeeper)         (企业里,一般用在这个)

  ZooKeeper提供了一个Leader Election机制,利用这个机制可以保证虽然集群存在多个Master,但是只有一个是Active的,其他的都是Standby。当Active的Master出现故障时,另外的一个Standby Master会被选举出来。由于集群的信息,包括Worker, Driver和Application的信息都已经持久化到文件系统,因此在切换的过程中只会影响新Job的提交,对于正在进行的Job没有任何的影响。加入ZooKeeper的集群整体架构如下图所示。

本文的测试是在Spark0.9.0 Standalone ,同样适用于Spark1.0.0 Standalone 以上版本。

 

1.基于文件系统的单点恢复

  主要用于开发或测试环境。当spark提供目录保存spark Application和worker的注册信息,并将他们的恢复状态写入该目录中,这时,一旦Master发生故障,就可以通过重新启动Master进程(sbin/start-master.sh),恢复已运行的spark Application和worker的注册信息。
基于文件系统的单点恢复,主要是在spark-env里对SPARK_DAEMON_JAVA_OPTS设置:

System property Meaning
spark.deploy.recoveryMode Set to FILESYSTEM to enable single-node recovery mode (default: NONE).(设成FILESYSTEM , 缺省值为NONE)
spark.deploy.recoveryDirectory The directory in which Spark will store recovery state, accessible from the Master's perspective.(Spark 保存恢复状态的目录)

可以考虑使用NFS的共享目录来保存Spark恢复状态。 

1.1配置

[root@bigdata001 spark]# vi conf/spark-env.sh

添加property

export SPARK_DAEMON_JAVA_OPTS="-Dspark.deploy.recoveryMode=FILESYSTEM -Dspark.deploy.recoveryDirectory=/nfs/spark/recovery"

1.2测试

1.启动Spark Standalone集群:[root@bigdata001 spark]# ./sbin/start-all.sh 

2.启动一个spark-shell客户端并做部分操作后,然后用sbin/stop-master.sh杀死Master进程

[root@bigdata003 spark]# MASTER=spark://bigdata001:7077 bin/spark-shell

[root@bigdata001 spark]# ./sbin/stop-master.sh

3.测试结果:可以在bigdata003看到information,连接不上master。

14/08/26 13:54:01 WARN AppClient$ClientActor: Connection to akka.tcp://sparkMaster@bigdata001:7077 failed; waiting for master to reconnect...14/08/26 13:54:01 WARN SparkDeploySchedulerBackend: Disconnected from Spark cluster! Waiting for reconnection...14/08/26 13:54:01 WARN AppClient$ClientActor: Connection to akka.tcp://sparkMaster@bigdata001:7077 failed; waiting for master to reconnect...14/08/26 13:54:01 WARN AppClient$ClientActor: Could not connect to akka.tcp://sparkMaster@bigdata001:7077: akka.remote.EndpointAssociationException: Association failed with [akka.tcp://sparkMaster@bigdata001:7077]

4.重新启动一下master,可以恢复正常:

[root@bigdata001 spark]# ./sbin/start-master.sh 

 

 

2.Standby Masters with ZooKeeper

  用于生产模式。其基本原理是通过zookeeper来选举一个Master,其他的Master处于Standby状态。

将Standalone集群连接到同一个ZooKeeper实例并启动多个Master,利用zookeeper提供的选举和状态保存功能,可以使一个Master被选举,而其他Master处于Standby状态。如果现任Master死去,另一个Master会通过选举产生,并恢复到旧的Master状态,然后恢复调度。整个恢复过程可能要1-2分钟。

注意:

  • 这个过程只会影响新Application的调度,对于在故障期间已经运行的 application不会受到影响。
  • 因为涉及到多个Master,所以对于应用程序的提交就有了一点变化,因为应用程序需要知道当前的Master的IP地址和端口。这种HA方案处理这种情况很简单,只需要在SparkContext指向一个Master列表就可以了,如spark://host1:port1,host2:port2,host3:port3,应用程序会轮询列表

  该HA方案使用起来很简单,首先启动一个ZooKeeper集群,然后在不同节点上启动Master,注意这些节点需要具有相同的zookeeper配置(ZooKeeper URL 和目录)。

System property Meaning
spark.deploy.recoveryMode Set to ZOOKEEPER to enable standby Master recovery mode (default: NONE).
spark.deploy.zookeeper.url The ZooKeeper cluster url (e.g., 192.168.1.100:2181,192.168.1.101:2181).
spark.deploy.zookeeper.dir The directory in ZooKeeper to store recovery state (default: /spark).

   Master可以在任何时候添加或移除。如果发生故障切换,新的Master将联系所有以前注册的Application和Worker告知Master的改变。

  注意:不能将Master定义在conf/spark-env.sh里了,而是直接在Application中定义。涉及的参数是 export SPARK_MASTER_IP=bigdata001,这项不配置或者为空。否则,无法启动多个master。

  比如,我这里。

export JAVA_HOME=/usr/local/jdk/jdk1.8.0_60

export SCALA_HOME=/usr/local/scala/scala-2.10.4
export HADOOP_HOME=/usr/local/hadoop/hadoop-2.6.0
export HADOOP_CONF_DIR=/usr/local/hadoop/hadoop-2.6.0/etc/hadoop
export SPARK_MASTER_IP=SparkMaster
export SPARK_MASTER_PORT=7077
export SPARK_WORKER_MERMORY=1g
export SPARK_WORKER_CORES=1
export SPARK_WORKER_INSTANCES=1

export SPARK_HOME=/usr/local/spark/spark-1.5.2-bin-hadoop2.6

export SPARK_JAR=/usr/local/spark/spark-1.5.2-bin-hadoop2.6/lib/spark-assembly-1.5.2-hadoop2.6.0.jar
export PATH=$PATH:$SPARK_HOME/bin:$SPARK_HOME/sbin

 

 

 

 

 

 

 

   现在得去安装zookeeper,三台都要,经验起见,只需在SparkMaster安装即可,然后分发给SparkWorker1和SparkWorker2。

这里的安装步骤省略。

 

 

dataDir=/usr/local/data/zookeeper/zkdata

dataLogDir=/usr/local/data/zookeeper/zkdatalog

#server.

server.1=SparkMaster:2888:3888
server.2=SparkWorker1:2888:3888
server.3=SparkWorker2:2888:3888

 

 

 

 

 

 

 

   现在呢,我把SparkMaster的Master杀死掉,然后,我在SparkWorker1启动Master。

 

root@SparkWorker1:/usr/local/spark/spark-1.5.2-bin-hadoop2.6/sbin# ./start-master.sh

 

 

 

 

2.1 配置

[root@bigdata001 spark]# vi conf/spark-env.sh

添加Property

#ZK HAexport SPARK_DAEMON_JAVA_OPTS="-Dspark.deploy.recoveryMode=ZOOKEEPER -Dspark.deploy.zookeeper.url=bigdata001:2181,bigdata002:2181,bigdata003:2181 -Dspark.deploy.zookeeper.dir=/spark"

2.2 测试

1.前提:zookeeper集群已经启动。

2.关闭集群后,重新启动spark集群:

[root@bigdata001 spark]# ./sbin/stop-all.sh  [root@bigdata001 spark]# ./sbin/start-all.sh

3.在另一个节点上,启动新的master:[root@bigdata002 spark]# ./sbin/start-master.sh 

4.查看Web UI:http://bigdata001:8081/

5.启动一个spark-shell客户端:[root@bigdata003 spark]# MASTER=spark://bigdata001:7077,bigdata002:7077 bin/spark-shell

MASTER is spark://bigdata001:7077,bigdata002:7077=-====-----------------------/home/zjw/tachyon/tachyon-0.4.1/target/tachyon-0.4.1-jar-with-dependencies.jar:/home/zjw/tachyon/tachyon-0.4.1/target/tachyon-0.4.1-jar-with-dependencies.jar:/home/zjw/tachyon/tachyon-0.4.1/target/tachyon-0.4.1-jar-with-dependencies.jar:/home/zjw/tachyon/tachyon-0.4.1/target/tachyon-0.4.1-jar-with-dependencies.jar::/src/java/target/mesos-0.19.0.jar:/src/java/target/mesos-0.19.0.jar:/root/spark/conf:/root/spark/assembly/target/scala-2.10/spark-assembly-0.9.0-incubating-hadoop2.2.0.jar*********RUNNER=/home/zjw/jdk1.7/jdk1.7.0_51//bin/java*********CLASSPATH=/home/zjw/tachyon/tachyon-0.4.1/target/tachyon-0.4.1-jar-with-dependencies.jar:/home/zjw/tachyon/tachyon-0.4.1/target/tachyon-0.4.1-jar-with-dependencies.jar:/home/zjw/tachyon/tachyon-0.4.1/target/tachyon-0.4.1-jar-with-dependencies.jar:/home/zjw/tachyon/tachyon-0.4.1/target/tachyon-0.4.1-jar-with-dependencies.jar::/src/java/target/mesos-0.19.0.jar:/src/java/target/mesos-0.19.0.jar:/root/spark/conf:/root/spark/assembly/target/scala-2.10/spark-assembly-0.9.0-incubating-hadoop2.2.0.jar*********JAVA_OPTS=-Dspark.executor.uri=hdfs://192.168.1.101:8020/user/spark/spark-0.9.2.tar.gz -Dspark.akka.frameSize=20   -Djava.library.path= -Xms512m -Xmx512m

6.停掉正在service的Master:[root@bigdata001 spark]# ./sbin/stop-master.sh

 spark-shell输出如下信息:用sbin/stop-master.sh杀死bigdata001 的Master进程,这时saprk-shell花费了30秒左右的时候切换到bigdata002 上的Master了。

14/08/26 13:54:01 WARN AppClient$ClientActor: Connection to akka.tcp://sparkMaster@bigdata001:7077 failed; waiting for master to reconnect...14/08/26 13:54:01 WARN SparkDeploySchedulerBackend: Disconnected from Spark cluster! Waiting for reconnection...14/08/26 13:54:01 WARN AppClient$ClientActor: Connection to akka.tcp://sparkMaster@bigdata001:7077 failed; waiting for master to reconnect...14/08/26 13:54:01 WARN AppClient$ClientActor: Could not connect to akka.tcp://sparkMaster@bigdata001:7077: akka.remote.EndpointAssociationException: Association failed with [akka.tcp://sparkMaster@bigdata001:7077]14/08/26 13:54:01 WARN AppClient$ClientActor: Connection to akka.tcp://sparkMaster@bigdata001:7077 failed; waiting for master to reconnect...14/08/26 13:54:01 WARN AppClient$ClientActor: Could not connect to akka.tcp://sparkMaster@bigdata001:7077: akka.remote.EndpointAssociationException: Association failed with [akka.tcp://sparkMaster@bigdata001:7077]14/08/26 13:54:01 WARN AppClient$ClientActor: Connection to akka.tcp://sparkMaster@bigdata001:7077 failed; waiting for master to reconnect...14/08/26 13:54:01 WARN AppClient$ClientActor: Could not connect to akka.tcp://sparkMaster@bigdata001:7077: akka.remote.EndpointAssociationException: Association failed with [akka.tcp://sparkMaster@bigdata001:7077]14/08/26 13:54:01 WARN AppClient$ClientActor: Connection to akka.tcp://sparkMaster@bigdata001:7077 failed; waiting for master to reconnect...14/08/26 13:54:30 INFO AppClient$ClientActor: Master has changed, new master is at spark://bigdata002:7077

7.查看UI监控器,这是Active Master是bigdata002。正在运行的Application资源没发生变化。

http://bigdata002:8082/

 

设计理念

      为了解决Standalone模式下的Master的SPOF,Spark采用了ZooKeeper提供的选举功能。Spark并没有采用ZooKeeper原生的Java API,而是采用了Curator,一个对ZooKeeper进行了封装的框架。采用了Curator后,Spark不用管理与ZooKeeper的连接,这些对于Spark来说都是透明的。Spark仅仅使用了100行代码,就实现了Master的HA。

进阶源码学习

参考资料

http://www.cnblogs.com/hseagle/p/3673147.html

https://spark.apache.org/docs/0.9.0/spark-standalone.html#standby-masters-with-zookeeper

你可能感兴趣的文章
【转】MFC 之CEvent
查看>>
1.1.5-学习Opencv与MFC混合编程之---画图工具 输入文字和填充图像 修改光标
查看>>
设备文件的创建mknod
查看>>
Android 新浪微博代码
查看>>
C 语言中 typeof keyword简单介绍
查看>>
连载《一个程序猿的生命周期》-1.从大山走出的程序猿
查看>>
【leetcode】Surrounded Regions(middle)☆
查看>>
如何使电脑彻底崩溃!!!!(不要干坏事哦)
查看>>
Lintcode: Segment Tree Build
查看>>
Google Map API V3开发(1)
查看>>
iOS 应用性能测试的相关方法、工具及技巧
查看>>
录制音频
查看>>
主动领取与被动分配
查看>>
iOS 实现时间线列表效果
查看>>
这9点误区新手不要踩
查看>>
iOS 开发中的争议(一)
查看>>
MyBatis特殊字符转义
查看>>
CSharpGL(34)以从零编写一个KleinBottle渲染器为例学习如何使用CSharpGL
查看>>
程序员的四个阶段
查看>>
数据库实例: STOREBOOK > 表空间 > 编辑 表空间: SYSTEM
查看>>